#### PREHOSPITAL EBGs

# External Validation of Maryland TOR Rules for Pediatric Out-of-Hospital Cardiac Arrest

Jen Anders, MD Jen Fishe, MD Salvatore D'Acunto, MBA, MS Remle Crowe, PhD Kathleen Adelgais, MD Matthew Harris, MD

## Termination of Resuscitation

- TOR in adult patients
- Numerous ALS, BLS and mixed protocols
- Reduce futile transports, improved provider safety, and potentially *improved outcomes?*

 Growing body of evidence in the literature and significant clinical buy-in by EMS agencies, medical directors and collaborators

## Pediatric TOR (pTOR)

- Limited evidence has been amassed
- No current uniformly accepted guideline for medical TOR in pediatric patients\*
- AAP, ACS and NAEMSP have generated a trauma pTOR position statement.
- Historical barrier (provider comfort, 'kids deserve more, *lack of guidelines*, etc).

## The Maryland Criteria

### Medical:

- A pediatric patient (has not yet reached the 18<sup>th</sup> birthday) after the patient has received 15 two-minute cycles of CPR, and at least 3 doses of epinephrine the patient is:
- (i) in asystole, AND
- (ii) has a sustained ETCO2 of less than 15 mmHg.
- (iii) In the judgement of EMS and law enforcement on scene, there is adequate social/emotional support and safety for civilians and professionals on scene

## The Maryland Criteria

#### <u>Trauma</u>

- Pediatric patient (has not yet reached the 15<sup>th</sup> birthday) EMS clinicians may terminate resuscitation if:
- (a) after five two minute cycles of CPR without ROSC
- (b) If asystole on monitor;
- (c) and ETCO2 < 15 mm Hg.

## Methods:

### Study Design

This is a large descriptive and comparative analysis of a large administrative data set with discrete, de-identified data. ESO is a leading emergency medical services (EMS), fire, and hospital software and data company in the United States. ESO Currently serves more than 8,000 customers across the country.

## Methods

- Descriptive analysis
- Univariate and Multivariable regression
- Natural Language Processing
- Quantify the Predictive Value of the Maryland Medical and Trauma pTOR Guidelines

| ESO Patient Encounters 2019 | 8,340,148 |
|-----------------------------|-----------|
| Cardiac Arrest              | 92,438    |
| 911 Response                | 70,709    |
| Age 0 - 17 years            | 1,825     |

| ROSC known               | 1726 |
|--------------------------|------|
| Missing Vitals           | - 50 |
| Missing Medical v Trauma | - 70 |
| Medical Arrests          | 1395 |
| Trauma Arrests           | 200  |

## ESO Demographic Results

• 60% Male

- Median Age 1 year (IQR 0-9)
- 55% White, 31% Black/AAA, 8% Hispanic/latino
- 80% Urban/Suburban, 17% Rural, 3% Super Rural

## **Arrest Characteristics**

• 60% unwitnessed (7% witnessed by EMS)

• 93% unshockable initial rhythm

• CPR started by bystander 33%

## **Univariate Analysis - ROSC**

| Variable                 | Unadjusted OR | 95% CI  |
|--------------------------|---------------|---------|
| Trauma                   | 1.2           | 0.9-1.7 |
| Non-White Ethnicity      | 0.7           | 0.5-0.9 |
| Male                     | 1.2           | 0.9-1.5 |
| Shockable rhythm         | 3.2           | 1.3-7.5 |
| Unwitnessed Arrest       | 0.3           | 0.2-0.4 |
| Arrest after EMS arrival | 2.1           | 1.5-3.0 |

## Univariate Analysis- ROSC

A decrease in ROSC was associated with:

- Decreasing age
- Prolonged Scene time
- Prolonged Transport time

## Applying the Criteria

## Medical TOR

N=1395



|                    | No ROSC | ROSC |      |  |
|--------------------|---------|------|------|--|
| TOR<br>Applies     | 44      | 1    | 45   |  |
| TOR Does not apply | 1028    | 322  | 1350 |  |
|                    | 1072    | 323  | 1395 |  |



1

4 y/o pool submersion

#### Sensitivity: 4.1%

#### Specificity: 99.6%

#### PPV: 97.8%

#### NPV: 76.1%

## Missed Case

4 y/o M s/p unwitnessed *drowning* 

- Submersion for 10-15 minutes prior to CPR

- ETT, 8 rounds of epi, 4 rounds of bicarb

- ROSC in field, unclear hospital outcome

# Trauma TOR

N=200



|                       | No ROSC | ROSC |     |
|-----------------------|---------|------|-----|
| TOR<br>Applies        | 42      | 4    | 46  |
| TOR Does<br>not apply | 104     | 50   | 154 |
|                       | 146     | 54   | 200 |



#### Sensitivity: 28.7%

#### Specificity: 92.6%

PPV: 91.3%

NPV: 32.5%

# Trauma TOR

N=200



|                       | No ROSC | ROSC |     |
|-----------------------|---------|------|-----|
| TOR<br>Applies        | 22      | 1    | 23  |
| TOR Does<br>not apply | 124     | 53   | 177 |
|                       | 146     | 54   | 200 |



Sensitivity: 15%

#### Specificity: 98.1%

PPV: 95.7%

NPV: 29.9%

## Limitations

• Hospital outcomes were limited

• Dependent on accurate data reporting and documentation

• Provider perceptions of outcomes.

## Discussion

- What are ideal PPV and NPV values for TOR studies?
- PPV of > 99% indicates that <u>less than 1%</u> of patients who meet TOR criteria will survive
- A high NPV reflects the likelihood of surviving if one *does not* meet TOR criteria
- Most studies of <u>adult TOR criteria</u> find PPV > 99% and NPV with a wider range of 1.3-46.3

## Conclusions

### **Medical**

 We found 97.8% PPV (Specificity 99.6%) and NPV of 76.1% (Sensitivity 4.1%)

- What is an acceptable PPV?

Our NPV was notably *higher* than comparable adult studies.

## Conclusions

#### <u>Trauma</u>

- Using a <u>10 minute</u> resuscitation interval:
- PPV 91.3% and specificity 92.6%
- NPV 38.5% and sensitivity 28.7%
- Using a <u>20 minute</u> resuscitation interval:
- **PPV 95.7%** and specificity 98.1%
- NPV 29.9% and sensitivity 15%

## **Future Direction**

 Considering other clinical factors that might continue to improve PPV for both medical and trauma pTOR guidelines

• Community Engagement Efforts

• Prospective Evaluation